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Note 

A Note on the Leap Frog Schemes in any Number of Space Variables 

1. Introduction 

Abarbanel and Gottlieb [l] examined the Leap Frog scheme and a modified form 
of it for the hyperbolic system of equations 

Thd standard and modified schemes generalize respectively, for the hyperbolic 
system of equations 

in m 3 1 space variables x, , p = 1, 2 ,..., m, to 

U;+l z U;l-’ - 5 dt &F;;, 

p=l Ax, 

and 

A third scheme 

is also considered, this being the average of (2) and (3). In these 

%V, = h+e, - L, , %DV, = & ( 1 Vl - 1 VI), Isn, Ia?* 
where 

(2) 

(3) 

(4) 

Ql = (i: / i, - j, / = ek, k = 1, 2 ,..., m, k #p, i, = j, + I), 

ii& = {i: / ik - jk 1 = e,, k = 1, 2 ,..., m, k # p, i, = j, - l}, 
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with j = (j, ,jz ,..., j,) the vector of suffices and e, a unit vector in m space withpth 
entry unity. 

2. Stability Analysis 

Linearizing (2), (J), and (4) by putting F,(I& = A,Uf9 , A, constant, and applying 
standard Fourier analysis leads to an amplification matrix for each of the schemes (2), 
(3), and (4). 

By the use of characteristic theory, as in [2], it follows that the speed of propagation 
c of waves in a specified direction is an eigenvalue of E = Cr-‘_, ADI,, , where I, for 
p = 1, 2,..., m are the direction cosines of the characteristic surface. 

The amplification matrices for (2), (3), and (4) can all be written as a function of the 
matrix E, this enabling the eigenvalues to be expressed as a function of c. Bounding 
the absolute value of these eigenvalues by unity leads for (2) (3), and (4) respectively 
to the stability results 

g< 
1 

I(C;=“=, sin2 cQi2 c I ’ is) 

1 
(6) 

and 

g< 
2 

l<C;=, sin2 apI1 + lJ~:=,,,,, cm2 @‘” c I ’ (7) 

In (5), (6), and (7) c depends upon CQ, and the basic stability results are obtained by 
minimizing the right-hand sides in these inequalities. This requires the particular 
dependence of c on (Ye be known so that the minimum may vary from problem to 
problem. However in the absence of this relationship the maximum value E = p(E) 
of c can be used to give stability results which will probably be more restrictive than 
the basic result (5), (6), or (7). 

By minimizing the appropriate trignometric functions it immediately follows that 
the stability conditions for (2), (3) and (4) are respectively 

ZAf I I 1 - - 
Ax ’ ml12 ’ 

cAt 
I I 
- <I Ax 

(8) 

(9) 

and 

cAt I-I Ax < 1. 
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These conditions are also sufficient for stability provided reasonable assumptions, 
such as E having linear divisors, hold. 
Since E = CyGl AJ, then, provided the matrices A, are hermitian, 

The stability results above imply bounds on 1 +lt/dx)I. Given I, it is possible to 
extend results (8), (9), and (10) in certain cases. In particular, with m = 2 in (3), it 
follows that Z, = sin a1 cos a2 , I, = sin or, cos a1 so that 

_ At I I At . At 
‘dx Ax < _ 1 sm IY~ COS a2 ] p(A,) i- - 1 sin 01~ cos 01~ ; f(A,). 

Ax 

A sufficient condition for the right-hand side of this to be bounded by unity is that 

In a similar manner, m = 3 in (3) results in 

$ p(A, or A, or A,) < ci!. 

Abarbanel and Gottlieb [I] considered the matrices A, mentioned above to be 
real and simultaneously symmetrizable. The stability results they obtained for (3) 
with m = 2 are identical to (11) and those for m = 3 are identical to (12). The matrices 
of the hydrodynamic equations can be simultaneously symmetrized, as shown by 
Turkel [3], so that if (3) was used in fluid flow problems the least restrictive stability 
condition would probably be (6). 

3. Comparison of Schemes 

The computational efficiency of a difference scheme depends upon its stability 
condition, the number of arithmetical operations required to advance the solution 
and the local truncation error. In any computation using (2), (3), or (4) to advance the 
solution of a problem in a region over a single time step, each scheme requires F,(a), 
p = 1, 2,..., m, to be evaluated at each mesh point in the region. Although a few 
extra additions are required to implement (4) compared with (3) and a few extra to 
implement (3) compared with (2), the contribution of these extra arithmetical opera- 
tions to the total computation required to advance the solution over a single time 
step is minimal unless the vectors F,(u) are of a very simple form. Thus the computa- 
tional requirement of the three schemes are effectively the same, other factors being 
equal. 

All three schemes have a local truncation error of the same order, these errors being 
functions of the third derivatives of u. If these derivatives are all of the same sign, 
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the error in (2) is less than that for (4) which in turn is less than that for (3). If the 
derivatives are not of the same sign it is impossible to compare these errors directly. 

The stability results thus indicate that there is little to choose between the modified 
and averaging schemes and that both of these are probably more efficient than the 
basic scheme for finite m. The greater efficiency of (3) over (2) is in agreement with the 
results of Abarbanel and Gottlieb [l] for m = 2. 

The rotated Richtmyer scheme uses the same averaging process as the modified 
Leap Frog scheme in approximating derivatives. It was shown in [2] that, in general, 
the rotated Richtmyer scheme was computationally more efficient than the basic 
Richtmyer scheme. It would thus appear that the use of some form of averaging 
process in approximating derivatives leads to increased computational efficiency. 

4. Suggested Extensions 

In (2) and (3) the space derivatives of (1) are approximated using mesh points not 
more than a mesh distance, in any coordinate direction, from the center of the domain 
of dependence. Equation (4) also satisfies these conditions. Other Leap Frog schemes 
using the same points cotiguration and which are a linear combination of (2) and (3) 
can be proposed. Equation (4) of course is the most obvious ‘linear combination of 
(2) and (3). Since there would not be any improvement in either the stability condition 
or in the arithmetical requirements for such a scheme as compared with (4) the im- 
provement would have to come from the truncation error. The ideal situation would 
be for a combination to give a higher order of accuracy. This is not possible. It is also 
not possible to select a combination which would always give a lower error than 
produced by (3) or (4). It would therefore hardly seem worthwhile to examine further 
Leap Frog approximations using the points configuration mentioned above. 
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